Salivary Diagnostics: Impact on Global Oral Health

Impact on Global Health

Enhancing Dentistry and Making Medicine Better

Improving Access to Care & Reducing Health Disparities

David Wong, DMD, DMSc
Professor, Associate Dean of Research, Director
University of California Los Angeles
Schools of Dentistry, Medicine & School of Engineering
Dental Research Institute, Molecular Biology Institute
Jonsson Comprehensive Cancer Center
Saliva as a Diagnostic Fluid

Saliva diagnostic alphabets

- Proteomic Biomarkers
- RNA Biomarkers

Clinical utilities: Early Detection of Oral Cancer

Point of care technology development

Impact on oral and global health
NIDCR Initiatives

Technology Development ↔ Salivary Proteome

- John McDervitt (U. Texas)
- Dan Malamud (NYU)
- David Walt (Tufts University)
- David Wong (UCLA)

- Susan Fisher (UCSF)
- David Wong (UCLA)
- John Yates (Scripps)
Road Map of Salivary Diagnostics
Vision

Use of Saliva for Disease Diagnostics as well as for Normal Health Surveillance
Why is Saliva not yet a mainstream diagnostic biofluid?

- Social taboo
- Cultural taboo
- Psychological taboo

- Lubricant for speech & mastication
- Antimicrobial factors
- Immunological factors
- Growth factors (EGF, NGF)
- Positive cultural values
- Real time monitoring of physiological changes
Human Salivary Proteome Central Repository

Download Files

- 914 Parotid Protein Identifications
- 917 SM/SL Protein Identifications
- 25 Accessions Found in Other IPI Versions
- HSP Identification Clusters
- HSP Annotation

SM/SL: Submandibular/Sublingual
HSP: Human Salivary Proteome
Protein Database: Human IPI v3.24

© 2005, UCLA Dental Research Institute
Bioinformatics User Facility
www.hspp.ucla.edu
Salivary Exon Expression Profiling
(SEEP)

1.4 million data points
Salivary Transcriptome Diagnostics for Oral Cancer

Patient-based genome-wide technologies to identify molecular biomarkers for HNSCC

Head & Neck Cancer

- Incidence: 6th
- 30,000 new cases annually
- 5-year survival rate < 50% not changed in the last 30 years
- Squamous cell carcinoma (HNSCC) < 40% survival rate
- Increased risk of developing metastasis and second malignancies

Rationale: OSCC in salivary milieu

As proof-of-principle disease
Proof of Principle of Salivary Transcriptome for Oral Cancer Diagnostics

Using 4 Saliva RNA Biomarkers: IL-1B, OAZ1, SAT and IL-8

<table>
<thead>
<tr>
<th>Area under ROC curve</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>0.91</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Salivary Transcriptome Diagnosis is Better than Blood Tests for Oral Cancer Detection

Saliva and blood test of oral cancer detection

<table>
<thead>
<tr>
<th>Area under ROC curve</th>
<th>Saliva Transcriptome Diagnosis*</th>
<th>Blood Tests**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Value Proposition of Early Detection of Oral Cancer

Early Detection

Unsupervised screening for oral cancer
Saliva Screen
"The REACH"

Lesion Localization
"The LOCATION"

Definitive Biopsy
"The DIAGNOSIS"

Supervision - Not Required

Supervision - Required

Supervision - Required
A next-generation handheld diagnostic platform delivers precision analysis of oral fluids.

It’s **smart**. Distinguish between several oral pathogens and cancer biomarkers.

It's **fast**. Perform targeted tests in just minutes.

It's **painless**. Make use of the body's natural diagnostic medium, no needles required.

It's **easy to use**. A technological fusion: microfluidics, optical cell detection and nanobiotechnology come together in a compact diagnostic tool for any clinic.

Administer the patient sample directly into a disposable microfluidic cartridge.

The detector analyses the bio-content of the sample and provides a concise, reliable readout.

The surface of the fluid channel houses a micro-patterned array of active biomolecules.
Oral Fluid NanoSensor Test
Diagnostic Opportunities

Dentists are the most involved in the oral cavity and they do see a large segment of the population . . .

- **There were 550 Million dental visits in 1999**
 - If average per patient is 2 visits per year
 - If 75% of patients were over 18 (at-risk for OSCC)

- **There was the opportunity to examine over 200 Million relevant patients for Oral Cancer**
Disease Overview

OSCC has a high survival rate if caught early. But it is not, and this carries a terrible human and financial cost . . .

• Aside from the human cost of late diagnosis, the economic costs, just in terms of treatment, are large:
 – Cost of treating a Stage 1 – 2 patient $15,000
 – Cost of treating a Stage 3 – 4 patient $200,000 - $500,000

• US total cost of treatment is estimated at $3.7 billion . . .

. . . If improved diagnostic capabilities enabled 70% of OSCC to be detected in Stages 1 or 2, direct savings to the healthcare system would be over $2 Billion per year
Given the magnitude of the need, it is not surprising that there are numerous initiatives underway to develop better screening tools . . .

Characterization by Current UCLA Development Team

- Saliva based proteomic & genomic biomarkers
- Chair side
- Card and reader
- Simple
- Less than 20 minutes
- Greater than 90% sensitivity and specificity
- Positive predictive values

Handheld Oral Health Diagnostics Using Bio-active Nanoscale Detection

A next generation handheld diagnostic platform delivers precision analysis of oral fluids.

In smart: Distinction between several oral pathogens and cancer biomarkers.

In fact: Perform targeted tests in just minutes.

In painless: Move use of the body’s natural diagnostic medium—mucus—directly impacting.

It is easy to use: A technological fusion of microfluidics, optical detection and nanotechnology come together in a compact diagnostic tool for any clinic.

Administer the patient’s sample directly into a disposable microfluidic cartridge.

The diagnostic analyzes the biomarker content of the sample and provides a concrete, reliable readout.

The surface of the fluid channel houses a micro-patterned array of active biomarkers.
Forthcoming soon:

In addition to the anticipated model / business scenario development, the following unanticipated issues need to be addressed . . .

• Cross over into the Medical channel
 – Coverage
 – Practices
 – Interest
 – Wants and needs

• Dental +/or Medical Channel Assessment
 – Pricing / Reimbursement
 – Cost of Coverage
 – Promotional costs
 – Use / penetration
 – OSCC and beyond

• Product Embodiment Roll-Out Implications
 – Chair side
 – Reference transitioning to chair side

• Business Model Development
• Oral Cancer
• Sjögren’s Syndrome
• Lung Cancer
• Breast Cancer
• Pancreatic Cancer
• Diabetes Type II
• Alzheimer’s Disease
• Ovarian Cancer
• Early Disease Detection
Distribution of Molecular Diagnostics Testing in the U.S.

- Gene/Chromosome Disease: 60%
- Infectious Disease: 16%
- Blood Bank: 15%
- Cancer: 7%
- Pharmacogenetics: 2%

Source: Kalorama Information 2005
The Fast Growing Molecular Diagnosis Segment in Global IVDs Market

<table>
<thead>
<tr>
<th>Type</th>
<th>2004</th>
<th>2009</th>
<th>*CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sales (in $millions)</td>
<td>Share</td>
<td>sales (in $millions)</td>
</tr>
<tr>
<td>Histology/Cytology</td>
<td>1860</td>
<td>45%</td>
<td>3120</td>
</tr>
<tr>
<td>Immunoassays</td>
<td>1250</td>
<td>30%</td>
<td>2300</td>
</tr>
<tr>
<td>Flow Cytometry</td>
<td>690</td>
<td>17%</td>
<td>1200</td>
</tr>
<tr>
<td>Rapid Tests</td>
<td>190</td>
<td>5%</td>
<td>340</td>
</tr>
<tr>
<td>Molecular Assays</td>
<td>95</td>
<td>2%</td>
<td>300</td>
</tr>
<tr>
<td>Tissue Arrays</td>
<td>15</td>
<td>0%</td>
<td>160</td>
</tr>
<tr>
<td>Pharmacodiagnostics</td>
<td>1</td>
<td>0%</td>
<td>20</td>
</tr>
<tr>
<td>Circulating Tumor Cells</td>
<td>1</td>
<td>0%</td>
<td>10</td>
</tr>
<tr>
<td>Circulating Plasma DNA</td>
<td>0</td>
<td>0%</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>4102</td>
<td></td>
<td>7455</td>
</tr>
</tbody>
</table>

*CAGR Cumulative Average Growth Rate

Source: Kalorama Information 2005
A New Industry
Saliva

• Diagnostics
• Pharmaco-proteomics
• Pharmaco-genomics

Personalized Individual Medicine
Saliva Diagnostics
Powered by
NanoTechnologies, Proteomics & Genomics

Research
Education
Curriculum
Advocacy

Type 2 Diabetes
Breast Cancer
Oral Cancer

NIDCR
Acknowledgements

- **Dental Research Institute, UCLA**
 - Bradley Henson, DDS, PhD
 - David Atkin R.N.
 - Martha Arellano, BA
 - Yan-Shan Dai, PhD
 - Amit Desphande, PhD
 - Mike Hu, PhD
 - Shen Hu, PhD
 - Jiang Jiang, PhD
 - Jeff Kim, BSc
 - Yong Kim, PhD
 - Shawn Than, MS
 - Noh Jin Park, PhD
 - Visu Paliswasmy, PhD
 - Jianguhua Wang, MD, PhD
 - Kai Gao, PhD
 - Larry Wolinsky, DDS, PhD
 - Xinmin Yan, MD, PhD
 - Weixia Yu, PhD
 - Michael Zhou, MS
 - Bernhard Zimmermann, PhD

- **School of Engineering, UCLA**
 - Chih-Ming Ho, PhD

- **School of Medicine, UCLA**
 - Elliot Abemayor, MD, PhD;
 - David Chia, PhD; David Elashoff, PhD
 - James Farrel, MD; Jenny Mao, MD
 - Vishad Nibili, MD; Marilene Wang, MD
 - Weihong Yan, PhD; Jeffrey Cummings MD, PhD
 - John Ringman, MD; George Bartzokis MD

- **University of Southern California**
 - Paul & Trish Denny; Mahvash Navazesh, DMD

- **Cedars Sinai Medical Center**
 - Beth Karlan, MD, PhD; Scott Karlan, MD, PhD

- **National Cheng Kung University/Chi-Mei Medical Center**
 - Dar-Bin Hsieh DDS, DMSc, Tung-Yao Wong, DDS
 - Yuh-Ling Chen, PhD; Dr. Kenny WF Chiang

- **School of Medicine, USC**: Uttam Sinha, MD

- **Tgen/U. of Arizona**: Glen Weiss, MD

- **School of Dentistry, UCSF**
 - Richard Jordan, DDS, PhD; David Eisele, MD

- **University of Minnesota**: Nelson Rhodus DDS, PhD

- **New York University**: Daniel Malamud, PhD

- **Frank Ondrey MD; Tim Griffin PhD

- **University of Groningen**
 - Arjan Vissink, DMD, MD, PhD

- **University of Belgrade**: Maca Kastratovic, MD

- **GeneFluidics Inc.**: Vincent Gau, PhD

Supported by NIH U01 DE17790, U01 DE16275, RO1 DE15970, RO1 DE17593 and UCLA JCCC
Road Map of Salivary Diagnostics